

AMOSTRAGEM COMPLEXA

Bases de Dados IAN-AF

Tutorial para análise ponderada recorrendo aos softwares SPSS e R

Conteúdo

Nota introdutória	3
1. Software SPSS	4
2. Software R	16

Referências

- [1] R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-roject.org/.
- [2] T. Lumley (2017) "survey: analysis of complex survey samples". R package version 3.32.
- [3] T. Lumley (2004) Analysis of complex survey samples. Journal of Statistical Software. 9(1): 1-19

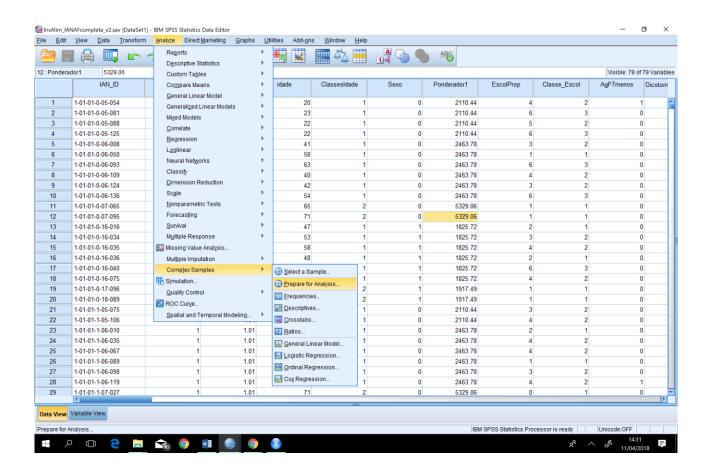
Nota Introdutória

No Inquérito Alimentar Nacional e de Atividade Física, IAN-AF 2015-2016, os participantes foram selecionados aleatoriamente por um processo de amostragem complexa bietápica, a partir do Registo Nacional de Utentes do Serviço Nacional de Saúde. O processo de amostragem desenvolveu-se da seguinte forma:

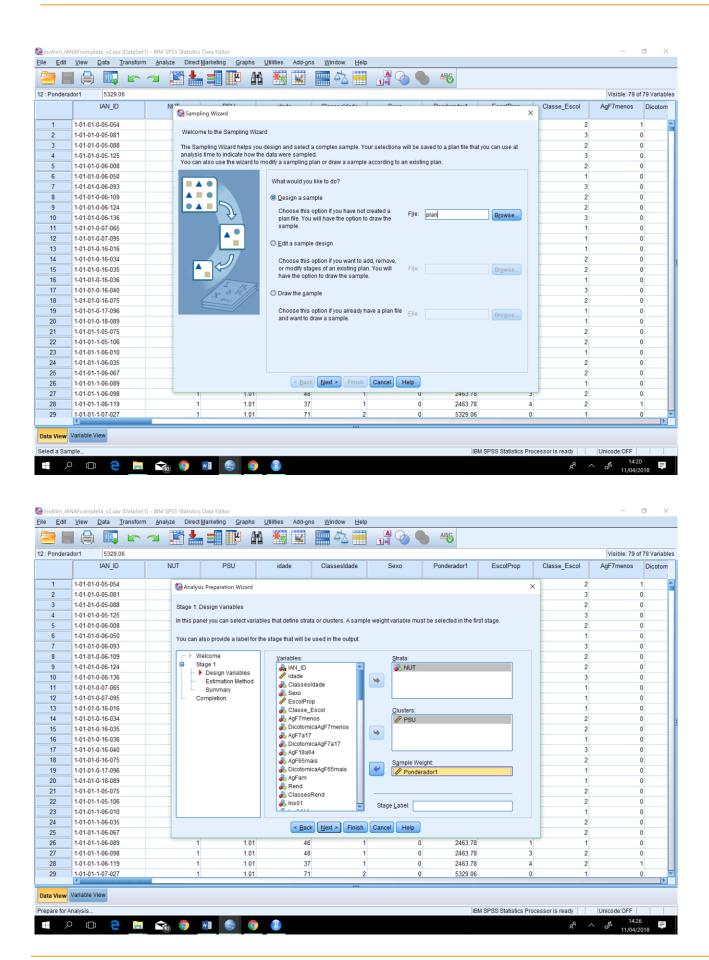
- i. Selecionou-se aleatoriamente Unidades Funcionais de Saúde (UFS) em cada Unidade Territorial para Fins Estatísticos (NUTS II), ponderada para o número de inscritos; o número de USF selecionadas foi 21 nas regiões do Norte, Centro e Área Metropolitana de Lisboa, 12 nas regiões do Algarve a Alentejo e seis nas Regiões Autónomas da Madeira e Açores.
- ii. Selecionou-se aleatoriamente indivíduos registados em cada Unidade Funcional de Saúde, com um número fixo de elementos por sexo e grupo etário.

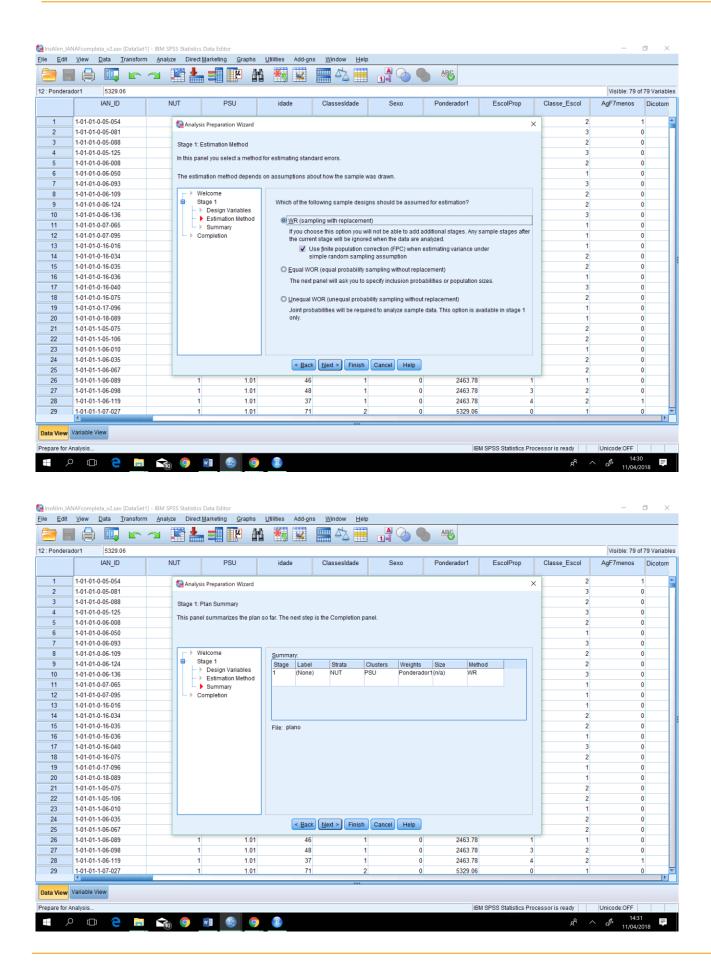
Para calcular as estimativas do IAN-AF 2015-2016 considerando o processo de amostragem complexa bietápica, a nível nacional e regional, a análise estatística utiliza uma ponderação dos dados amostrais. O peso amostral representa quantos indivíduos (em número) da população Portuguesa representa cada indivíduo da amostra em estudo. O cálculo dos pesos amostrais incluiu os seguintes critérios:

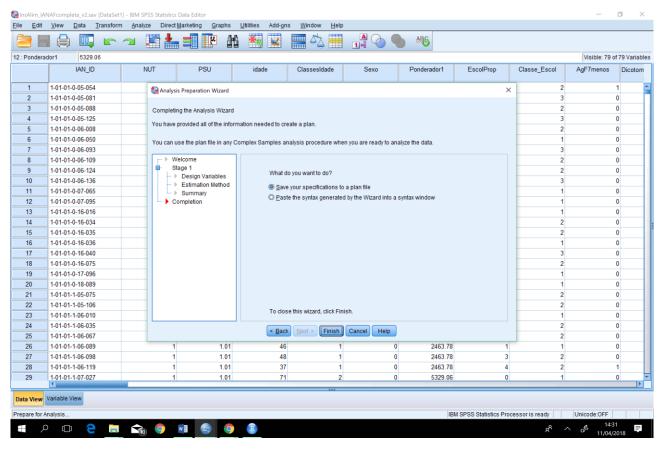
- i. ponderação inicial para compensar as diferentes probabilidades de seleção de cada Unidade Funcional de Saúde;
- ii. ponderação para compensar as diferentes probabilidades de seleção de cada indivíduo em cada Unidade de Saúde, por sexo e grupo etário (considerando os indivíduos inscritos no RNU na onda de recrutamento mais próxima)
- iii. correção dos pesos iniciais para o viés de não-resposta.

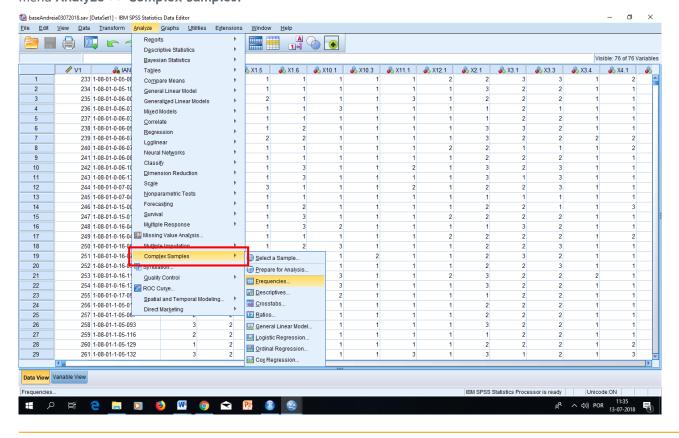

No final, de forma a obter dados corrigidos para o viés de não-resposta quer da primeira quer da segunda entrevista, criaram-se dois ponderadores, sendo que o primeiro ponderador, *Ponderador1*, utiliza-se para dados recolhidos na primeira entrevista e o segundo, *Ponderador2*, para dados recolhidos na segunda entrevista. Assim, todas estimativas referentes aos domínios Atividade Física e Estado Nutricional devem ser feitas recorrendo ao Ponderador1, enquanto que o domínio Alimentação deve utilizar o Ponderador2.

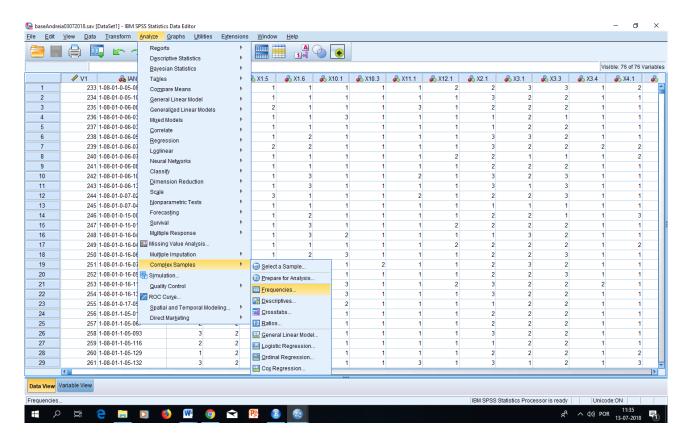
Neste tutorial, exemplifica-se as etapas a seguir de forma a obter estimativas ponderadas de acordo com o desenho de amostragem complexo do IAN-AF 2015-2016, utilizando os softwares SPSS e R [1].


1. Software SPSS

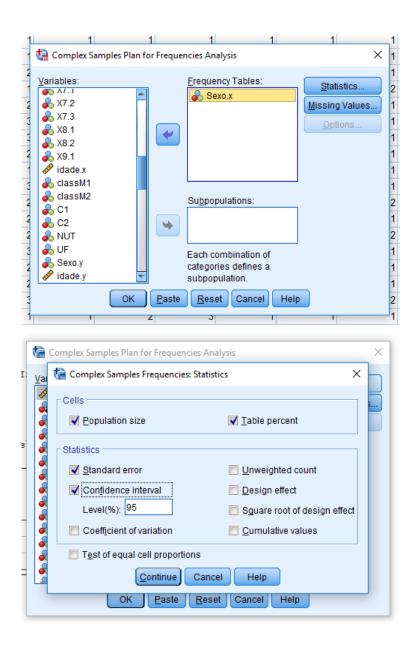

De forma a obter estimativas ponderadas em SPSS de acordo com o desenho de amostragem complexo IAN-AF 2015-2016, é necessário, numa primeira fase, construir um ficheiro indicador do desenho da amostragem complexa. Para tal, é obrigatório ter presente as variáveis "PSU", "NUT" e a respetiva variável de ponderação, que se encontram na tabela de dados sociodemográficos. Assim, é sempre necessário juntar a base de dados sociodemográficos à base com as variáveis em estudo.





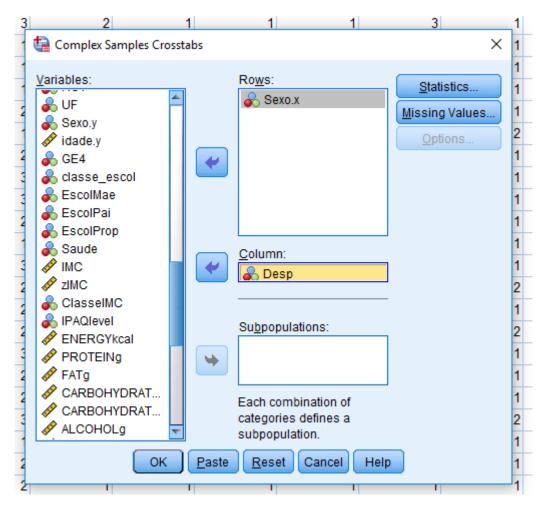

Este ficheiro será usado para todas as análises estatísticas que terão de ser realizadas obrigatoriamente no menu **Analyze** >> **Complex Samples**.

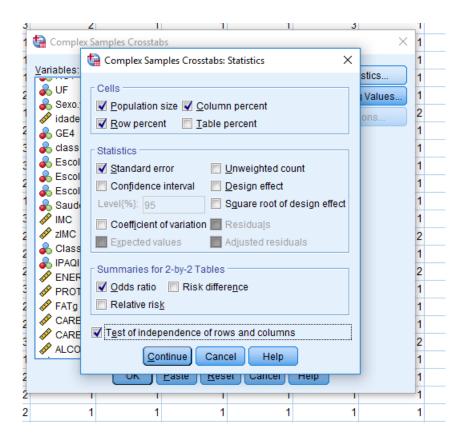
1.1. Estimar frequências ponderadas


Para estimar frequências ponderadas, deve-se aceder a **Analyze >> Complex Samples >> Frequencies** e selecionar o ficheiro anteriormente construído.

De seguida, seleciona-se a variável para a qual queremos estimar as frequências ponderadas e as respetivas estatísticas associadas.

Resultado:


Sexo.x								
		Estimate	Standard Error	95% Confidence Interval				
		Littilate	Standard Lift	Lower	Upper			
	0	4739432,770	145329,479	4450795,879	5028069,661			
Population Size	1	4449227,520	126039,458	4198902,276	4699552,764			
-	Total	9188660,290	239273,706	8713442,056	9663878,524			
	0	51,6%	0,7%	50,2%	53,0%			
% of Total	1	48,4%	0,7%	47,0%	49,8%			
	Total	100,0%	0,0%	100,0%	100,0%			


1.2. Testar a independência/associação entre 2 variáveis categóricas

Para testar a independência/associação entre duas variáveis categóricas, deve-se aceder a **Analyze** >> **Complex Samples** >> **Crosstabs** e selecionar o ficheiro anteriormente construído.

De seguida, selecionam-se as variáveis a testar e as estatísticas desejadas.

Resultado:

Sexo.x * Desp

	Cava	_	Desp				
	Sexo.x		0	1	Total		
	Danislation Cina —	Estimate	2916200,750	1689662,870	4605863,620		
	Population Size —	Standard Error	119981,932	104059,923	143375,307		
0	0/	Estimate	63,3%	36,7%	100,0%		
0	% within Sexo.x —	Standard Error	1,9%	1,9%	0,0%		
	0/ : th:- D	Estimate	53,4%	47,1%	50,9%		
	% within Desp —	Standard Error	1,3%	1,7%	4605863,620 143375,307 100,0% 0,0% 50,9% 0,7% 4447036,590 126295,420 100,0% 49,1% 0,7% 9052900,210 234706,467 100,0% 0,0%		
	Dec letter 6: -	Estimate	2547897,160	1899139,430	4447036,590		
	Population Size —	Standard Error	109990,959	108317,206	126295,420		
	0/ ::1: 6	Estimate	57,3%	42,7%	100,0%		
1	% within Sexo.x —	Standard Error	2,0%	2,0%	0,0%		
	0/	Estimate	46,6%	52,9%	49,1%		
	% within Desp —	Standard Error	1,3%	1,7%	0,7%		
	D 1 C	Estimate	5464097,910	3588802,300	9052900,210		
	Population Size —	Standard Error	183758,461	173125,807	234706,467		
T		Estimate	60,4%	39,6%	100,0%		
Total	% within Sexo.x —	Standard Error	1,5%	1,5%	0,0%		
	0/	Estimate	100,0%	100,0%	100,0%		
	% within Desp Standard Error		0,0%	0,0%	0,0%		

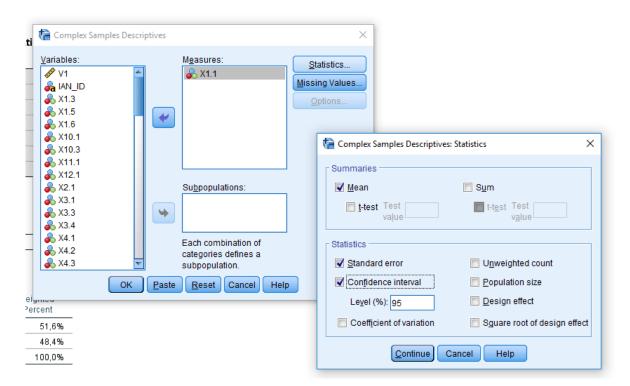
Tests of Independence

		Chi-Square	Adjusted F	df1	df2	Sig.
	Pearson	14,388	6,020	1	92	,016
Sexo.x * Desp	Likelihood Ratio	14,394	6,022	1	92	,016

The adjusted F is a variant of the second-order Rao-Scott adjusted chi-square statistic. Significance is based on the adjusted F and its degrees of freedom.

Measures of Association

		Estimate
Sexo.x * Desp	Odds Ratio	1,286
Contract to the second	1 6 6 1 6 1 1 1 1 1	


Statistics are computed only for 2-by-2 tables with all cells observed.

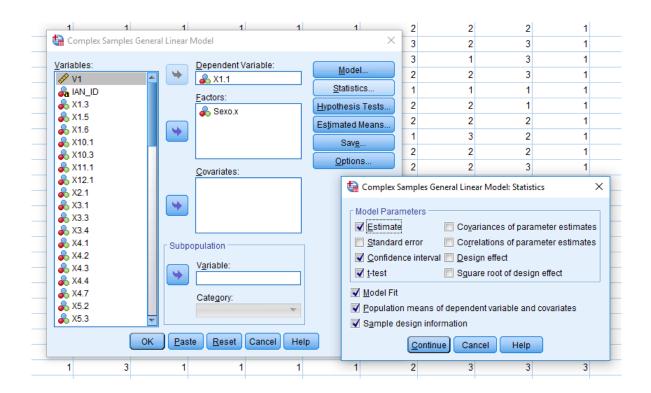
1.3. Estimar média ponderada

Para estimar a média ponderada e o respetivo intervalo de confiança de uma variável contínua, deve-se aceder a **Analyze** >> **Complex Samples** >> **Descriptives** e selecionar o ficheiro anteriormente construído.

De seguida, selecionam-se a variáveis cuja média se deseja estimar e as estatísticas desejadas.

Resultado:

Univariate Statistics


		Estimate	Standard Error	95% Confidence Interval		
		LStillate	Standard Liroi	Lower	Upper	
Mean	X1.1	2,14	,027	2,09	2,19	

1.4. Regressão Linear

Para fazer comparação de médias ponderadas ou regressão linear para os dados ponderados, deve-se aceder a **Analyze** >> **Complex Samples** >> **General Linear Model** e selecionar o ficheiro anteriormente construído.

De seguida, selecionam-se a variáveis dependente e as independentes assim como as estatísticas desejadas. Se a variável selecionada for do tipo categórica, deve ser adicionada em Factors, caso contrário, se for do tipo continua, deve ser adicionada em Covariates.

Resultado:

Parameter Estimates^a

i didilictor Estillates						
Parameter	Estimate	95% Confidence Interval		Hypothesis Test		
rarameter		Lower	Upper	t	df	Sig.
(Intercept)	2,129	2,056	2,203	57,592	92,000	,000
[Sexo.x=0]	,020	-,068	,108	,456	92,000	,649
[Sexo.x=1]	,000b					

a. Model: X1.1 = (Intercept) + Sexo.x

b. Set to zero because this parameter is redundant.

2. Software R

Para obter estimativas ponderadas em R de acordo com o desenho de amostragem complexo IAN-AF 2015-2016, recorre-se à biblioteca "survey" [2,3].

```
> install.packages("survey")
> library(survey)
```

Ao criar a base de dados a usar para realizar estimativas ponderadas é obrigatório ter presente as variáveis "PSU", "NUT" e a respetiva variável de ponderação, que se encontram na tabela de dados sociodemográficos. Assim, é sempre necessário juntar a base de dados sociodemográficos à base com as variáveis em estudo.

```
# mudar nome das tabelas de acordo com os nomes dos ficheiros exportados
# mudar variável ponderador de acordo com as variáveis a analisar

> base = read.csv2("Tabela_Ponderador_Sociodem.csv", stringsAsFactors = F)
> atvfis = read.csv2("Tabela_AFisica.csv", stringsAsFactors = F)
> b = merge(base, atvfis)

> svdx<-svydesign(id = ~PSU, strata = ~NUT, weights = ~Ponderador1, data = b)
> summary(svdx)
```

De seguida, exemplifica-se algumas análises possíveis recorrendo a este package. Mais informações sobre funções implementadas nesta biblioteca encontram-se disponíveis na respetiva documentação.

2.1. Frequência de variáveis categóricas e média de variáveis contínuas

O comando "svymean" calcula a média ponderada de uma variável de acordo com o desenho de amostragem complexo. Se a variável em questão for do tipo "factor", então esta função calcula a proporção ponderada de cada categoria da variável.

2.2. Estatísticas em subconjuntos

Para estimar estatísticas em subconjuntos definidos por um fator, usa-se o comando "svyby".

É ainda possível definir isoladamente um subconjunto para posterior análise.

2.3. Testes de hipóteses

Teste t para comparação de médias:

Teste χ^2 para comparação de proporções:

```
> svychisq(~GE4+Sexo, svdx)

Pearson's X^2: Rao & Scott adjustment

data: svychisq(~GE4 + Sexo, svdx)
F = 4.4883, ndf = 1.9053, ddf = 175.2800, p-value = 0.01385
```


2.4. Modelos de regressão

Modelo de regressão linear:

```
> m1=svyglm(IMC ~ Sexo + Idade + factor(EscolClass_Prop) , family=gaussian(), svdx)
> summary(m1)
call:
svyglm(formula = IMC ~ Sexo + Idade + factor(EscolClass_Prop),
   family = gaussian(), subsvdx)
Survey design:
svdx
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                     (Intercept)
Sexo
                     -0.332601
                               0.241667 -1.376
                                                0.172
Idade
                      0.272237 -5.142 1.63e-06 ***
factor(EscolClass_Prop)2 -1.399916
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 20.84462)
Number of Fisher Scoring iterations: 2
> cbind(coef(m1),confint(m1))
                                    2.5 %
                                              97.5 %
                     24.44561278 23.52026639 25.37095917
(Intercept)
                     -0.33260125 -0.80626059 0.14105808
Sexo
                      0.08492765 0.07093221 0.09892308
Idade
factor(EscolClass_Prop)2 -1.39991563 -1.93349039 -0.86634087
factor(EscolClass_Prop)3 -2.05718129 -2.58605546 -1.52830711
```


Modelo de regressão logística:

```
> m1=svyglm(factor(Desp) ~ factor(GrupoEtario), family=binomial(link = 'logit'), svdx)
> summary(m1)
Call:
svyglm(formula = factor(Desp) ~ factor(GrupoEtario), family = binomial(link = "logit"),
   subsvdx)
Survey design:
svdx
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    0.44697
                              0.14980
                                      2.984
                                              0.00367 **
factor(GrupoEtario)2 -0.08235
                              0.18099 -0.455 0.65023
                              0.15511 -5.407 5.32e-07 ***
factor(GrupoEtario)3 -0.83873
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1.000187)
Number of Fisher Scoring iterations: 4
> cbind(exp(coef(m1)),exp(confint(m1)))
                                2.5 %
                                        97.5 %
                   1.5601185 1.1636513 2.0916658
(Intercept)
factor(GrupoEtario)2 0.9240598 0.6467305 1.3203127
factor(GrupoEtario)3 0.4309102 0.3187190 0.5825935
factor(GrupoEtario)4 0.3164551 0.2187010 0.4579029
```